skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cornejo, Ian C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundAccess to biologically available nitrogen is a key constraint on plant growth in both natural and agricultural settings. Variation in tolerance to nitrogen deficit stress and productivity in nitrogen limited conditions exists both within and between plant species. However, our understanding of changes in different phenotypes under long term low nitrogen stress and their impact on important agronomic traits, such as yield, is still limited. ResultsHere we quantified variation in the metabolic, physiological, and morphological responses of a sorghum association panel assembled to represent global genetic diversity to long term, nitrogen deficit stress and the relationship of these responses to grain yield under both conditions. Grain yield exhibits substantial genotype by environment interaction while many other morphological and physiological traits exhibited consistent responses to nitrogen stress across the population. Large scale nontargeted metabolic profiling for a subset of lines in both conditions identified a range of metabolic responses to long term nitrogen deficit stress. Several metabolites were associated with yield under high and low nitrogen conditions. ConclusionOur results highlight that grain yield in sorghum, unlike many morpho-physiological traits, exhibits substantial variability of genotype specific responses to long term low severity nitrogen deficit stress. Metabolic response to long term nitrogen stress shown higher proportion of variability explained by genotype specific responses than did morpho-pysiological traits and several metabolites were correlated with yield. This suggest, that it might be possible to build predictive models using metabolite abundance to estimate which sorghum genotypes will exhibit greater or lesser decreases in yield in response to nitrogen deficit, however further research needs to be done to evaluate such model. 
    more » « less
  2. Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era. 
    more » « less